SARASWATI MAHILA MAHAVIDHYALAYA, PALWAL

LESSON-PLAN

Class: Msc physics first year Semester: II

Subject: solid state physics Session: 2020-21

Lecture Number	Topic
1	Unit-I crystalline solid, lattice, the basis, lattice translation
2	Vectors , direct lattice, two and three dimensional Bravais lattice
3	Conventional unit cell of FCC, BCC,
4	BLACK, CsCL, Diamond and cubic ZnS
5	Primitive lattice cell of FCC,BCC and HCP
6	Closed packed structure: packing fraction of simple cubic
7	BCC, FCC, hcp and diamond structure
8	Revision Test
9	Interaction of x- rays with matter
10	Absorption of x-rays,
11	Elastic scattering from a perfect lattice
12	The reciprocal lattice and it's application to diffraction techniques
13	Ewalds construction
14	The laye, powder and rotating crystal method
15	Atomic form factor, crystal structure factor and intensity of diffraction maxima
16	Crystal structure factors of bcc,FCC
17	Monoatomic diamond lattice, polyatomic CuZn
18	Assignment of unit -I
19	Revision of unit -I

20	Numerical practice session
21	Numerical test
22	Numerical assignment
23	Unit - II vibration of one dimensional mono and diatomic chains
24	Phonon momentum, density of normal mode in one and three dimensional
25	Quantization of lattice vibration
26	Measurements of phonon dispersion using in elastic nutron s catering
27	Point defects, line defect and planner faults
28	Fundamental ideas of the role of dislocation in plastic deformation
29	Revision Test of above topic
30	Crystal growth
31	Numerical practice
32	Numerical practice session
33	Observation in imperfections in crystals
34	x-Rays and electron microscopic techniques
35	Test of unit -II
36	Assignment of unit -II
37	Revision of unit-II numerical
38	Unit -III Electron in periodic lattice
39	Block theorem kronig penny model and band theory
40	Classification of solids
41	Effective mass

Weak binding method and it's application to linear lattice
Tight binding method
And it's application to cubic BCC
FCC crystal
Concept of holes
Fermi surface construction of Fermi surface in two dimensions
De hass van alfen effect
Cyclotron resonance
Magneto - resistance
Revision unit test -III
Numerical test
Numerical practice session
Assignment of unit III
Whole unit revision Test of unit - III
Revision Test of unit III
Unit - IV Weiss theory of ferromagnetic
Heisenberg model and molecular field theoy of ferromagnetic of spin waves and magnons
Revision of above topic
Curie Weiss law for susceptibility
Ferriand anti ferro magnetic order
Numerical session
Numerical session

1 D	Oomain and block wall energy
5 0	Occurrence of superconductivity
5 N	Neissner effect
7 T	ype -I and Type -II superconductors
3 H	leat capacity
) E	nergy gap, isotope effect
) L	ondon equation, coherence length, postulates of BCS
L T	heory of superconductivity, BCS ground state, persistent current
2 H	ligh temperature oxide, super conductors introduction and discovery
3 R	evision of unit -IV test
1 N	lumerical revision

Signature: Neeraj Verma